Algebra 1 – UNIT 1 Relationships between Quantities and Reasoning with Equations

Critical Area: By the end of eighth grade, students have learned to solve linear equations in one variable and have applied graphical and algebraic methods to analyze and solve systems of linear equations in two variables. This unit builds on these earlier experiences by asking students to analyze and explain the process of solving an equation. Students develop fluency writing, interpreting, and translating between various forms of linear equations and inequalities, and using them to solve problems. They master the solution of linear equations and apply related solution techniques and the laws of exponents to the creation and solution of simple exponential equations. All of this work is grounded on understanding quantities and on relationships between them.

CLUSTERS	COMMON CORE STATE STANDARDS	SpringBoard CONNECTIONS	OTHER RESOURCES
	Algebra - Seeing Structure in Expressions	1-1 Numeric and Graphic	MARS Tasks:
(m) Interpret the structure of	A.SSE.1 Interpret expressions that represent	Representations of Data	Solving Equation in One
expressions.	a quantity in terms of its context.★	1-2 Writing Expression	<u>Variable</u>
Limit to linear expressions and to	a. Interpret parts of an expression, such as	2-1 Writing and Solving Equations	Sorting Equations and Identities
exponential expressions with integer	terms, factors, and coefficients.	2-2Equations with Variables on	Manipulating Polynomials
exponents.	b. Interpret complicated expressions by	Both Sides	<u>Defining Regions of Inequalities</u>
	viewing one or more of their parts as single	2-3 Solving More Complex	Comparing Investments
	entity. For example, interpret $P(1+r)n$ as	Equations	
	the product of P and a factor not depending	2-4 Equations with No Solutions or	Teaching Channel:
(m) Understand solving equations	on P.	Infinitely Many Solutions	<u>Using Stations to Explore</u>
as a process of reasoning and		2-5 Solving Literal Equations for a	Algebra Expressions
explain the reasoning.		Variable	
Students should focus on and master		31-1 Solving by Graphing or	
A.REI.1 for linear equations and be		Factoring	
able to extend and apply their		31-2 The Axis of Symmetry and	
reasoning to other types of equations		the Vertex	
in future courses.		31-3 Graphing a Quadratic	
		Function	
(m) Solve equations and			
inequalities in one variable.			
Extend earlier work with solving	Algebra - Reasoning with Equations and	3-1 Inequalities and Their Solutions	Illustrative Mathematics:
linear equations to solving linear	Inequalities	3-2 Solving Inequalities	Exploring Equations Algebra Tiles
inequalities in one variable and to	A.REI.1 Explain each step in solving a	3-3 Compound Inequalities	Algebra Tiles
solving literal equations that are	simple equation as following from the		
linear in the variable being solved	equality of numbers asserted at the previous		Mathematics Vision Project:
for. Include simple exponential	step, starting from the assumption that the		Module 1: Getting Ready
equations that rely only on	original equation has a solution. Construct a viable argument to justify a solution		
application of the laws of exponents,	viable argument to justify a solution		Module

LAUSD Secondary Mathematics

such as $5x = 125$ or $2x = \frac{1}{16}$.	A.REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. A.REI.3.1 Solve one-variable equations and inequalities involving absolute value,		Illustrative Mathematics: Integer Solutions to Inequality Teaching Channel: Collaborate to Solve Compound
	graphing the solutions and interpreting them in context. CA addition		<u>Inequalities</u>
(s/a) Reason quantitatively and use units to solve problems. Working with quantities and the relationships between them provides grounding for work with expressions,	Numbers - Quantities N.Q.1 Use units as a way to understand problems and to guide the solution of multistep problems; choose and interpret units consistently in formulas; choose and interpret	1-1 Numeric and Graphic Representations of Data 1-2 Writing Expression 2-1 Writing and Solving Equations 2-2Equations with Variables on	MARS TASK: Leaky Faucet Dan Meyer Achieve the Core:
equations, and functions.	the scale and the origin in graphs and data displays.	Both Sides 2-3 Solving More Complex Equations	Yogurt Packing Illustrative Mathematics:
(m) Create equations that describe numbers or relationships. Limit A.CED.1 and A.CED.2 to linear and exponential equations, and in the	N.Q.2 Define appropriate quantities for the purpose of descriptive modeling.	2-4 Equations with No Solutions or Infinitely Many Solutions 2-5 Solving Literal Equations for a Variable	How Much is a penny worth Traffic Jam
and exponential equations, and, in the case of exponential equations, limit to situations requiring evaluation of exponential functions at integer inputs. Limit A.CED.3 to linear equations and inequalities. Limit A.CED.4 to formulas which are linear in the variable of interest.	N.Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	33-1 Fitting Data with a Quadratic Function 33-2 Interpreting Solutions of Quadratic Equations	Georgia Standards: Unit 1: Relationships Between Quantities
	Algebra - Creating Equations A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and	3-1 Inequalities and Their Solutions 3-2 Solving Inequalities 3-3 Compound Inequalities	MARS Tasks: Building and Solving Equations Optimization Problems:
	quadratic functions, and simple rational and exponential functions.	4-1 Absolute Value Equations4-2 Absolute Value Inequalities	Boomerangs

LAUSD Secondary Mathematics

	10-1 Direct Variation 10-2 Indirect Variation 10-3 Another Linear Model 10-4 Inverse Functions 33-1 Fitting Data with a Quadratic Function 33-2 Interpreting Solutions of Quadratic Equations	
		Illuminations:
A.CED.2 Create equations in two or more		Bathtub Water Levels
variables to represent relationships between quantities; graph equations on coordinate axes		Inside Mathematics:
with labels and scales.		On a Balance
A.CED.3 Represent constraints by equations or inequalities, and by systems of equations	18-1 Representing the Solution of a System of Inequalities	Illustrative Mathematics:
and/or inequalities, and interpret solutions as viable or non-viable options in a modeling	18-2 Interpreting the Solution of a System of Inequalities	Dimes and Quarters
context. For example, represent inequalities describing nutritional and cost constraints on		Equations and Formulas
combinations of different foods.		Rewriting Equations
A.CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning		Teaching Channel
as in solving equations. For example, rearrange Ohm's law V = IR to highlight		Reviewing Linear Equations in Two Variables
viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. A.CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example,		Equations and Formulas Rewriting Equations Teaching Channel Reviewing Linear Equations in

Algebra 1 – UNIT 2 **Linear and Exponential Relationships**

Critical Area: Students will learn function notation and develop the concepts of domain and range. They move beyond viewing functions as processes that take inputs and yield outputs and start viewing functions as objects in their own right. They explore many examples of functions, including sequences; they interpret functions given graphically, numerically, symbolically, and verbally, translate between representations, and understand the limitations of various representations. They work with functions given by graphs and tables, keeping in mind that, depending upon the context, these representations are likely to be approximate and incomplete. Their work includes functions that can be described or approximated by formulas as well as those that cannot. When functions describe relationships between quantities arising from a context, students reason with the units in which those quantities are measured. Students explore systems of equations and inequalities, and they find and interpret their solutions. Students build on and informally extend their understanding of integer exponents to consider exponential functions. They compare and contrast linear and exponential functions, distinguishing between additive and multiplicative change. They interpret arithmetic sequences as linear functions and geometric sequences as exponential functions

CLUSTERS	COMMON CORE STATE STANDARDS	SpringBoard CONNECTIONS	OTHER RESOURCES
Extend the properties of exponents to	Number and Quantity - The Real Number		Mars Tasks:
rational exponents.	System		Applying Properties of
_	N.RN.1 . Explain how the definition of the	19-1 Basic Exponents Properties	<u>Exponents</u>
	meaning of rational exponents follows from	19-2 Negative and Zero Powers	Giantburgers
	extending the properties of integer exponents to	19-3 Additional Properties of	Multiplying Cells
	those values, allowing for a notation for radicals	Exponents	The Real Number System
	in terms of rational exponents. For example, we		Manipulating Radicals
	define $5^{1/3}$ to be the cube root of 5 because we		
	want $(5^{1/3})^3 = 5^{(1/3)3}$ to hold, so $(5^{1/3})^3$ must equal		
	5.		
	N.RN.2 Rewrite expressions involving radicals		
	and rational exponents using the properties of		
	exponents.		
Build a function that models a	Functions - Building Functions		MARS Tasks:
relationship between two quantities.	F.BF.1. Write a function that describes a	10-1 Direct Variation	A Golden Crown
	relationship between two quantities.★	10-2 Indirect Variation	
Limit to F.BF.1a, 1b, and 2 to linear		10-3 Another Linear Model	Illuminations:
and exponential functions. In F.BF.2,	a. Determine an explicit expression, a	10-4 Inverse Functions	Graphing Real-Life Data
connect arithmetic sequences to	recursive process, or steps for calculation	33-1 Fitting Data with a	
linear functions and geometric	from a context.	Quadratic Function	Illustrative Mathematics:
sequences to exponential functions.	b. Combine standard function types using	33-2 Interpreting Solutions of	Skeleton Tower
	arithmetic operations. For example, build a	Quadratic Equations	A Sum of Functions
	function that models the temperature of a	34-1 Constructing Models	Lake Algae
	cooling body by adding a constant function to	34-2 Comparing Models	Kim and Jordan

April 20, 2015 Draft Page 4 **LAUSD Secondary Mathematics**

CLUSTERS	COMMON CORE STATE STANDARDS	SpringBoard CONNECTIONS	OTHER RESOURCES
	 a decaying exponential, and relate these functions to the model. F.BF.2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. ★ 	34-3 Extending Models 1-1 Numeric and Graphic Representations of Data 1-2 Writing Expression 21-1 Identifying Geometric Sequences 21-2 Formulas for Geometric Sequences	Intervention MARS Task: Modeling Situations with Linear Equations
Build new functions from existing functions. Focus on vertical translations of graphs of linear and exponential functions. Relate the vertical translation of a linear function to its y-intercept. While applying other transformations to a linear graph is appropriate at this level, it may be difficult for students to identify or distinguish between the effects of the other transformations included in this standard.	Functions - Building Functions F.BF.3. Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, k , $f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.		Illustrative Mathematics: Campus Flu Teaching Channel: Intervention Conjecturing About Functions YouCubed.org Intervention Patterns and Functions Unit
Understand the concept of a function notation.	Functions - Interpreting Functions F.IF.1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph	5-1 Relations and Functions 5-2 Domain and Range 5-3 Function Notation	Illustrative Mathematics Foxes and Rabbits Mathematics Vision Project: Module 5 Features of Functions

CLUSTERS	COMMON CORE STATE STANDARDS	SpringBoard CONNECTIONS	OTHER RESOURCES
	of f is the graph of the equation $y = f(x)$.		
	F.IF.2 . Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	13-1 Scatter Plots and Trend Lines 13-2 Linear Regression 13-3 Quadratic and Exponential Regressions	Domain and Range
	F.IF.3 . Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n + 1) = f(n) + f(n - 1)$ for $n \ge 1$.	11-1 Identifying Arithmetic Sequence 11-2 Point-Slope From 11-3 Standard Form 11-4 Recursive Formulas 21-1 Identifying Geometric Sequences 21-2 Formulas for Geometric Sequences	
Interpret functions that arise in	Functions - Interpreting Functions	6-1 Key Features of Graphs	
applications in terms of a context.	F.IF.4 For a function that models a relationship	6-2 More Complex	
	between two quantities, interpret key features of	6-3 Graphs of Real-World	
Focus linear and exponential functions	graphs and tables in terms of the quantities, and	Situations	
	sketch graphs showing key features given a	13-1 Scatter Plots and Trend	
	verbal description of the relationship. <i>Key</i>	Lines	
	features include: intercepts; intervals where the	13-2 Linear Regression	
	function is increasing, decreasing, positive, or	13-3 Quadratic and Exponential	
	negative; relative maximums and minimums;	Regressions	
	symmetries; end behavior; and periodicity.★	15-1 Writing Equations from	
		Graphs and Tables	
		15-2 Comparing Functions with	
		Inequalities 15-3 Writing Equations from	
		Verbal Descriptions	
		22-1 Exponential Functions and	
		Exponential Growth	
		22-2 Exponential Decay	

CLUSTERS	COMMON CORE STATE STANDARDS	SpringBoard CONNECTIONS	OTHER RESOURCES
		22-3 Graphs of Exponential	
		Functions	
		29-1 Modeling with a Quadratic	
		Functions	
		29-2 Graphing and Analyzing a	
		Quadratic Function	
		30-1 Translations of the	
		Quadratic parent Functions	
		30-2 Stretching and Shrinking the	
		Quadratic Parent Function	
		30-3 Multiple Transformation of	
		the Quadratic Parent Function	
Analyze functions using different	Functions - Interpreting Functions		Illustrative Mathematics
representations.	F.IF.7. Graph functions expressed symbolically	6-1 Key Features of Graphs	Foxes and Rabbits
Linear, exponential, quadratic, absolute	and show key features of the graph, by hand in	6-2 More Complex	Interpreting the Graph
value, step, piecewise-defined.	simple cases and using technology for more	6-3 Graphs of Real-World	
	complicated cases.	Situations	
	a. Graph linear and quadratic functions and	7-1 The Spring Experiment	
	show intercepts, maxima, and minima.	7-2 The Falling Object	
	b. Graph square root, cube root, and piecewise-	Experiment	
	defined functions, including step functions and	7-3 The Radioactive Decay	
	absolute value functions. ★	Experiment	
		13-1 Scatter Plots and Trend	
		Lines	
		13-2 Linear Regression	
		13-3 Quadratic and Exponential	
		Regressions	
		14-1 Function Notation and Rate	
	F.IF.9 . Compare properties of two functions	of Change	
	each represented in a different way	14-2 Writing Functions and	
	(algebraically, graphically, numerically in	Finding Domain and Range	
	tables, or by verbal descriptions). For example,	14-3 Evaluating Functions and	
	given a graph of one quadratic function and an	Graphing Piecewise-Defined	
	algebraic expression for another, say which has	Linear Functions	
	the larger maximum.	14-4 Comparing Functions	
		15-1 Writing Equations from	

CLUSTERS	COMMON CORE STATE STANDARDS	SpringBoard CONNECTIONS	OTHER RESOURCES
		Graphs and Tables	
		15-2 Comparing Functions with	
		Inequalities	
		15-3 Writing Equations from	
		Verbal Descriptions	
		29-1 Modeling with a Quadratic	
		Functions	
		29-2 Graphing and Analyzing a	
		Quadratic Function	
		30-1 Translations of the	
		Quadratic parent Functions	
		30-2 Stretching and Shrinking the	
		Quadratic Parent Function	
		30-3 Multiple Transformation of	
		the Quadratic Parent Function	
		35-1 Solving a System	
		Graphically	
		35-2 Solving a System	
		Algebraically	
Solve systems of equations.	Algebra - Reasoning with Equations and		
Linear-linear and linear-quadratic.	Inequalities	17.177 0 1: 1/4.1	
	A.REI.5 . Prove that, given a system of two	17-1 The Graphing Method	
	equations in two variables, replacing one	17-2 Using Tables and the	
	equation by the sum of that equation and a	Substitution Method	
	multiple	17-3 The Elimination Method	
	of the other produces a system with the same	17-4 Systems Without a Unique	
	solutions	Solution	
	A.REI.6 . Solve systems of linear equations	17-5 Classifying Systems of	
	exactly and approximately (e.g., with graphs),	Equations	
	focusing on pairs of linear equations in two		
	variables.		
Represent and solve equations and	Algebra - Reasoning with Equations and		Mars Tasks:
inequalities	Inequalities		Defining Regions Using
Graphically.	A.REI.10 . Understand that the graph of an	7-1 The Spring Experiment	<u>Inequalities</u>
Linear and exponential; learn as general	equation in two variables is the set of all its	7-2 The Falling Object	
principle.	solutions plotted in the coordinate plane, often	Experiment	

CLUSTERS	COMMON CORE STATE STANDARDS	SpringBoard CONNECTIONS	OTHER RESOURCES
	forming a curve (which could be a line).	7-3 The Radioactive Decay Experiment 12-1 Slope-Intercept Form 12-2 Point-Slope Form 12-3 Standard Form 12-4 Slopes of Parallel and Perpendicular Lines	
	A.REI.11 . Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x) = g(x)$ find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/ or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. \bigstar	17-1 The Graphing Method 17-2 Using Tables and the Substitution Method 17-3 The Elimination Method 17-4 Systems Without a Unique Solution 17-5 Classifying Systems of Equations 35-1 Solving a System Graphically 35-2 Solving a System Algebraically	
	A.REI.12 . Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	16-1 Writing and Graphing Inequalities in Two Variables 16-2 Graphing Inequalities in Two Variables 18-1 Representing the Solution of a System of Inequalities 18-2 Interpreting the Solution of a System of Inequalities	

Algebra 1 – UNIT 3 Descriptive Statistics

Critical Area: Experience with descriptive statistics began as early as Grade 6. Students were expected to display numerical data and summarize it using measures of center and variability. By the end of middle school they were creating scatterplots and recognizing linear trends in data. This unit builds upon that prior experience, providing students with more formal means of assessing how a model fits data. Students use regression techniques to describe approximately linear relationships between quantities. They use graphical representations and knowledge of the context to make judgments about the appropriateness of linear models.

With linear models, they look at residuals to analyze the goodness of fit.

CLUSTERS	COMMON CORE STATE STANDARDS	Textbook: SpringBoard (2014)	OTHER RESOURCES
(s) Summarize, represent, and	Statistics and Probability - Interpreting	36-1: Mean, Median, Mode and MAD	MARS Tasks:
interpret data on a single count or	Categorical and Quantitative Data		Using Frequency Graphs
measurement variable. ★	S.ID.1 Represent data with plots on the real	36-2: Another Measure of Variability	
	number line (dot plots, histograms, and box		<u>Using Box Plots</u>
<i>In grades</i> 6 – 8, students describe	plots).	37-1: Dot Plots and Box Plots	
center and spread in a data			Illustrative Mathematics:
distribution. Here they choose a	S.ID.2 Use statistics appropriate to the shape	37-2: Modified Box Plots	<u>Haircut Costs</u>
summary statistic appropriate to	of the data distribution to compare center		
the characteristics of the data	(median, mean) and spread (interquartile	37-3: Normally Distributed	Speed Trap
distribution, such as the shape of	range, standard deviation) of two or more		
the distribution or the existence	different data sets.	EA1: Comparing Univariate	<u>Understanding the</u>
of extreme data points.	G 775 G 7		Standard Deviation
	S.ID.3 Interpret differences in shape, center,	Distributions – Splitting the Bill	37 1 122
	and spread in the context of the data sets,		Measuring Variability in
	accounting for possible effects of extreme data		<u>a Data Set</u>
	points (outliers).		Mathematics Vision
			Project:
			Module 8-Modeling
			Data
(s) Summarize, represent, and	Statistics and Probability - Interpreting	39-1: Line of Best Fit	MARS Tasks:
interpret data on two categorical	Categorical and Quantitative Data	37-1. Line of Best Fit	A Case of Muddying the
and quantitative variables. ★	S.ID.5 Summarize categorical data for two	39-2: Residuals	Waters
una quantitutive variables. A	categories in two-way frequency tables.	o z. monum	Interpreting and Using a
Students take a more	Interpret relative frequencies in the context of	40-1: Bivariate Categorical Data	Graph: Taxi Fares
sophisticated look at using a	the data (including joint, marginal, and		Devising a Measure for
linear function to model the	conditional relative frequencies). Recognize	40-2: Presenting Relative Frequency	Correlation
relationship between two	possible associations and trends in the data.		

LAUSD Secondary Mathematics

numerical variables. In addition to fitting a line to data, students	S.ID.6 Represent data on two quantitative	Data Graphically	Illustrative Mathematics: Musical Preference
assess how well the model fits by analyzing residuals.	variables on a scatter plot, and describe how the variables are related.		Support for a Longer
S.ID.6b should be focused on	a. Fit a function to the data; use functions fitted to data to solve problems in the		School Day
linear models, but may be used to preview quadratic functions in	context of the data. Use given functions or choose a function suggested by the context.		Coffee and Crime
Unit 5 of this course.	Emphasize linear and exponential models. b. Informally assess the fit of a function by		<u>Laptop Battery Charge</u>
	plotting and analyzing residuals. c. Fit a linear function for a scatter plot that		Restaurant Bill and Party Size
	suggests a linear association.		
			Illuminations:
			Automobile Mileage:
			Year vs. Mileage
			Barbie Bungee
			Impact of a Superstar
(s) Interpret linear models. ★	Statistics and Probability - Interpreting	38-1: Scatter Plots	MARS Tasks:
	Categorical and Quantitative Data		A Case of Muddying the
Build on students' work with linear relationships in eighth	S.ID.7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model	38-2: Correlation Coefficient	Waters
grade and introduce the correlation coefficient. The focus	in the context of the data.	39-3: Interpreting the Slope and	Illustrative Mathematics: Texting and Grades II
here is on the computation and	S.ID.8 Compute (using technology) and	Intercept of the Best-Fit Line	
interpretation of the correlation	interpret the correlation coefficient of a linear		Olympic Men's 100-
coefficient as a measure of how well the data fit the relationship.	fit.	39-4: Plotting Residuals	meter Dash
The important distinction between a statistical relationship	S.ID.9 Distinguish between correlation and causation.		Coffee and Crime
and a cause-and-effect relationship arises in S.ID.9.			Golf and Divorce
			High Blood Pressure
			Math Test Grades

Algebra 1 - Unit 4 Expressions and Equations

Description of the critical area: In this unit, students build on their knowledge from Unit 2, where they extended the laws of exponents to rational exponents. Students apply this new understanding of numbers and strengthen their ability to see structure in and create quadratic and exponential expressions. They create and solve equations, inequalities, and systems of equations involving quadratic expressions and determine the values of the function it defines. Students understand that polynomials form a system analogous to the integers, they choose and produce equivalent forms of an expression.

CLUSTERS	COMMON CORE STATE STANDARDS	SpringBoard CONNECTIONS	OTHER RESOURCES
(m)Interpret the structure of	Algebra - Seeing Structure in Expressions	2-1 Writing and Solving	Mathematics Vision Project:
expressions.	A-SSE.1 Interpret expressions that represent a quantity	Equations	
	in terms of its context.★	2-2Equations with Variables	
	a. Interpret parts of an expression, such as terms,	on Both Sides	Mathematics Vision Project:
	factors, and coefficients.	2-3 Solving More Complex	Module 2- Structures of
	b. Interpret complicated expressions by viewing one or	Equations	Expressions
	more of their parts as a single entity. For example,	2-4 Equations with No	<u>Module 1 – Quadratic Functions</u>
	interpret $P(1+r)$ n as the product of P and a factor not	Solutions or Infinitely Many	
	depending on P.	Solutions	
		2-5 Solving Literal Equations	
		for a Variable	
		24-1 Polynomial Terminology	
		24-2 Adding Polynomial	
		Terminology	
		24-3 Subtracting Polynomials	
		25-1 Multiplying Binomials	
		25-2 Special Products of	
		Binomials	
		25-3 Multiplying Polynomials	
		26-1 Factoring by Greatest	
		Common Factor (GCF)	
		26-2 Factoring Special	
		Products	
		27-1 Factoring $x^2 + bx + c$	
		27-2 Factoring $ax^2 + bx + c$	
		31-1 Solving by Graphing or	
		Factoring	

CLUSTERS	COMMON CORE STATE STANDARDS	SpringBoard CONNECTIONS	OTHER RESOURCES
		31-2 The Axis of Symmetry	
		and the Vertex	
		31-3 Graphing a Quadratic	
		Function	
	A SSE 2 Has the atmention of an appropriate identify	20.1 Padical Euganosians	
	A-SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see $x4 - y4$ as $(x^2)^2 -$	20-1 Radical Expressions 20-2 Adding and Subtracting	
	$(y^2)^2$, thus recognizing it as a difference of squares	Radical Expressions	
	that can be factored as $(x^2 - y^2)(x^2 + y^2)$.	20-3 Multiplying and Dividing	
() VI 7	Alaskar Caria Charachara in Farmania	Radical Expressions	Mana Talan
(m)Write expressions in equivalent forms to solve	Algebra - Seeing Structure in Expressions A-SSE.3 Choose and produce an equivalent form of an	10.1 Pasia Evnananta	Mars Tasks: Interpreting Algebraic
problems.		19-1 Basic Exponents	Expressions
problems.	expression to reveal and explain properties of the	Properties 19-2 Negative and Zero	Forming Quadratics
	quantity represented by the expression.★	Powers	Forming Quadratics
	a. Factor a quadratic expression to reveal the zeros of the function it defines.		
		19-3 Additional Properties of	
	b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function	Exponents	
	it defines.	23-1 Compound Interest	
		23-2 Population Growth	
	c. Use the properties of exponents to transform	31-1 Solving by Graphing or Factoring	
	expressions for exponential functions. For example the expression 1.15t can be rewritten as	31-2 The Axis of Symmetry	
		and the Vertex	
	$(1.15^{1/2})^{12t} \approx 1.012^{12t}$ to reveal the approximate		
	equivalent monthly interest rate if the annual rate is	31-3 Graphing a Quadratic Function	
() D	15%.	Function	N/ 41 4 X7 D
(m)Perform arithmetic	Algebra – Arithmetic with Polynomial and Rational	24 1 Polynomial Torminals	Mathematics Vision Project: Module 3: Polynomial
operations on polynomials.	Expressions	24-1 Polynomial Terminology 24-2 Adding Polynomial	Connections Lesson 3.4
	A-APR.1 Understand that polynomials form a system	Terminology	Connections Lesson 5.4
	analogous to the integers, namely, they are closed		
	under the operations of addition, subtraction, and	24-3 Subtracting Polynomials	
(m)Create agretions that	multiplication; add, subtract, and multiply polynomials.		Mong Toolses
(m)Create equations that describe numbers or	Algebra - Creating Equations	10-1 Direct Variation	Mars Tasks:
	A-CED.1 Create equations and inequalities in one	10-1 Direct Variation 10-2 Indirect Variation	Printing Tickets
relationships.	variable and use them to solve problems. <i>Include</i>		
	equations arising from linear and quadratic functions,	10-3 Another Linear Model	

CLUSTERS	COMMON CORE STATE STANDARDS	SpringBoard CONNECTIONS	OTHER RESOURCES
	and simple rational and exponential functions.	10-4 Inverse Functions	Inside Mathematics:
		22-1 Exponential Functions	Miles of Tiles
		and Exponential Growth	
	A-CED.2 Create equations in two or more variables to	22-2 Exponential Decay	
	represent relationships between quantities; graph	22-3 Graphs of Exponential	
	equations on coordinate axes with labels and scales.	Functions	
		23-1 Compound Interest	
	A-CED.4 Rearrange formulas to highlight a quantity of	23-2 Population Growth	
	interest, using the same reasoning as in solving	_	
	equations. For example, rearrange Ohm's law $V = IR$		
	to highlight resistance R.		
(m)Solve equations and	Algebra - Reasoning with Equations and		Mars Task:
inequalities in one variable.	Inequalities	32-1 The Square Method	Multiple Solutions
	A-REI.4 Solve quadratic equations in one variable.	32-2 Completing the Square	
	a. Use the method of completing the square to	32-3 The Quadratic Formula	
	transform any quadratic equation in x into an equation	32-4 Choosing a Method and	
	of the form $(x-p)^2 = q$ that has the same solutions.	Using the Discriminant	Illustrative Mathematics:
	Derive the quadratic formula from this form.	32-5 Complex Solutions	Completing the Square
	b. Solve quadratic equations by inspection (e.g., for <i>x</i> 2		
	= 49), taking square roots, completing the square, the		
	quadratic formula and factoring, as appropriate to the		
	initial form of the equation. Recognize when the		
	quadratic formula gives complex solutions and write		
	them as $a \pm bi$ for real numbers a and b .		
(s)Solve systems of equations.	Algebra - Reasoning with Equations and		Illustrative Mathematics:
	Inequalities		A Linear and Quadratic System
	A-REI.5. Prove that, given a system of two equations		
	in two variables, replacing one equation by the sum of		
	that equation and a multiple of the other produces a		
	system with the same solutions.		
	A-REI.6. Solve systems of linear equations exactly and		
	approximately (e.g., with graphs), focusing on pairs of		
	linear equations in two variables	25.1.5.1.55	
	A-REI.7 Solve a simple system consisting of a linear	35-1 Solving a System	
	equation and a quadratic equation in two variables	Graphically	
	algebraically and graphically. For example, find the	35-2 Solving a System	

CLUSTERS	COMMON CORE STATE STANDARDS	SpringBoard CONNECTIONS	OTHER RESOURCES
	points of intersection between the line $y = -3x$ and the circle $x^2 + y^2 = 3$.	Algebraically	

Algebra 1– UNIT 5 Quadratic Functions and Modeling

Critical Area: In preparation for work with quadratic relationships students explore distinctions between rational and irrational numbers. They consider quadratic functions, comparing the key characteristics of quadratic functions to those of linear and exponential functions. They select from among these functions to model phenomena. Students learn to anticipate the graph of a quadratic function by interpreting various forms of quadratic expressions. In particular, they identify the real solutions of a quadratic equation as the zeros of a related quadratic function. Students learn that when quadratic equations do not have real solutions the number system must be extended so that solutions exist, analogous to the way in which extending the whole numbers to the negative numbers allows x+1=0 to have a solution. Formal work with complex numbers comes in Algebra II. Students expand their experience with functions to include more specialized functions—absolute value, step, and those that are piecewise-defined.

CLUSTER HEADINGS	COMMON CORE STATE STANDARDS	SpringBoard CONNECTIONS	OTHER RESOURCES
(s)Use properties of rational and irrational numbers. Connect N.RN.3 to physical situations, e.g., finding the perimeter of a square of area 2.	Number and Quantity - The Real Number System N.RN.3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.		
(m)Interpret functions that arise in applications in terms of a context. Focus on quadratic functions; compare with linear and exponential functions studied in Unit 2.	Functions - Interpreting Functions F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*	29-1 Modeling with a Quadratic Functions 29-2 Graphing and Analyzing a Quadratic Function	Illustrative Mathematics: Influenza Epidemic Warming and Cooling How is the Weather? Logistic Growth Model, Explicit Version The Canoe Trip, Variation 1 The High School Gym Temperature Change Average Cost
	F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. <i>For example, if the</i>	7-1 The Spring Experiment7-2 The Falling Object Experiment7-3 The Radioactive Decay	

	function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for he function.★	Experiment 11-1 Identifying Arithmetic Sequence 11-2 Point-Slope From 11-3 Standard Form 11-4 Recursive Formulas 30-1 Translations of the Quadratic parent Functions 30-2 Stretching and Shrinking the Quadratic Parent Function 30-3 Multiple Transformation of the Quadratic Parent Function 33-1 Fitting Data with a Quadratic Function 33-2 Interpreting Solutions of Quadratic Equations	
	F.IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.★	9-1 Slope 9-2 Slope and Rate of Change 9-3 More about Slopes 15-1 Writing Equations from Graphs and Tables 15-2 Comparing Functions with Inequalities 15-3 Writing Equations from Verbal Descriptions	
(m)Analyze functions using different	Functions - Interpreting Functions		MARS Tasks:
representations.	F.IF.7 Graph functions expressed symbolically	14-1 Function Notation and Rate	Functions and Everyday
	and show key features of the graph, by hand in	of Change	Situations
For F.IF.7b, compare and contrast	simple cases and using technology for more	14-2 Writing Functions and	
absolute value, step and piecewise	complicated cases.★	Finding Domain and Range	Illustrative Mathematics:
defined functions with linear,	a. Graph linear and quadratic functions	14-3 Evaluating Functions and	Identifying Graphs of Functions
quadratic, and exponential	and show intercepts, maxima, and	Graphing Piecewise-Defined	Which Function?
functions. Highlight issues of	minima.	Linear Functions	Throwing Baseballs

domain, range, and usefulness when examining piecewise defined functions. Note that this unit, and in particular in F.IF.8b, extends the work begun in Unit 2 on exponential functions with integer exponents. For F.IF.9, focus on expanding the types of functions considered to include, linear, exponential, and quadratic. Extend work with quadratics to include the relationship between coefficients and roots, and that once roots are known, a quadratic equation can be factored.	 b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. F.IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^{12t}, y = (1.2)^{t/10} and classify them as representing exponential growth or decay. F.IF.9 Compare properties of two functions each represented in a different way 	14-4 Comparing Functions 15-1 Writing Equations from Graphs and Tables 15-2 Comparing Functions with Inequalities 15-3 Writing Equations from Verbal Descriptions 29-1 Modeling with a Quadratic Functions 29-2 Graphing and Analyzing a Quadratic Function 32-1 The Square Method 32-2 Completing the Square 32-3 The Quadratic Formula 32-4 Choosing a Method and Using the Discriminant 32-5 Complex Solutions 34-1 Constructing Models 34-2 Comparing Models 34-3 Extending Models	
	$(1.02)^t$, $y = (0.97)^t$, $y = (1.01)^{12t}$, $y =$	34-2 Comparing Models	
		34-3 Extending Models	
	F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.		
(m)Build a function that models a	Functions - Building Functions		Graphing Stories (1-3
relationship between two quantities.	F.BF.1 Write a function that describes a	29-1 Modeling with a Quadratic	stories)
	relationship between two quantities.★	Functions	,
Focus on situations that exhibit a	a. Determine an explicit expression, a	29-2 Graphing and Analyzing a	Mars Task:
quadratic relationship.	recursive process, or steps for calculation	Quadratic Function	<u>Patchwork</u>
	from a context.	34-1 Constructing Models	<u>Sidewalk Patterns</u>
	b. Combine standard function types using	34-2 Comparing Models	

	arithmetic operations. For example, build	34-3 Extending Models	
	a function that models the temperature of	34-3 Extending Wodels	
	a cooling body by adding a constant		
	function to a decaying exponential, and		
	relate these functions to the model.		
(s)Build new functions from existing	Functions - Building Functions		
functions.	F.BF.3 Identify the effect on the graph of	8-1 Exploring $f(x) + k$	
	replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$	8-2 Exploring $f(x + k)$	
For F.BF.3, focus on quadratic	k) for specific values of k (both positive and		
functions, and consider including	negative); find the value of k given the graphs.		
absolute value functions. For	Experiment with cases and illustrate an		
F.BF.4a, focus on linear functions	explanation of the effects on the graph using		
but consider simple situations	technology. <i>Include recognizing even and odd</i>		
where the domain of the function	functions from their graphs and algebraic		
must be restricted in order for the	expressions for them.		
inverse to exist, such as $f(x) = x2$,	J		
x>0.	F.BF.4 Find inverse functions.		
<i>x</i> 5.	a. Solve an equation of the form $f(x) = c$		
	for a simple function f that has an inverse		
	and write an expression for the inverse.		
	For example, $f(x) = 2 \times 3$ or $f(x) =$		
	$(x+1)/(x-1) \text{ for } x \neq 1.$		
(s)Construct and compare linear,	Functions – Linear, Quadratic, and		MARS Task:
quadratic, and exponential models	Exponential Model		Modeling: Having Kittens
and solve problems.	F.LE.1 Distinguish between situations that can	9-1 Slope	Sorting Functions
Compare linear and exponential	be modeled with linear functions and with	9-2 Slope and Rate of Change	Linear and Exponential Models
growth to quadratic growth.	exponential functions.	9-3 More about Slopes	Emediate Exponential Wodels
grown to quartite grown.	a. Prove that linear functions grow by equal	21-1 Identifying Geometric	Mathematics Vision Project:
	differences over equal intervals; and that	Sequences	Arithmetic and Geometric
	exponential functions grow by equal factors	21-2 Formulas for Geometric	Sequence Sequence
	over equal intervals.	Sequences	<u>bequeñec</u>
	b. Recognize situations in which one	Sequences	Linear and Exponential
	quantity changes at a constant rate per unit		Functions
	interval relative to another.		1 uncuons
	c. Recognize situations in which a quantity		NCTM Illuminations
	grows or decays by a constant percent rate		Egg Launch
			<u>Egg Laurieri</u>
	per unit interval relative to another.		

	F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	11-1 Identifying Arithmetic Sequence 11-2 Point-Slope From 11-3 Standard Form 11-4 Recursive Formulas 12-1 Slope-Intercept Form 12-2 Point-Slope Form 12-3 Standard Form 12-4 Slopes of Parallel and Perpendicular Lines	
	F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	34-1 Constructing Models 34-2 Comparing Models 34-3 Extending Models 35-1 Solving a System Graphically 35-2 Solving a System Algebraically	
(s)Interpret expressions for functions in terms of the situation they model.	Functions – Linear, Quadratic, and Exponential Model F.LE.5 Interpret the parameters in a linear or exponential function in terms of a context.★ [Linear and exponential of form f(x)=b ^x +k.] F.LE.6. Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. ★ CA		Illustrative Mathematics: Throwing Baseballs – F.IF.9 and F.IF.4